Birds around the Minatogawa Man: the Late Pleistocene avian fossil assemblage of the Minatogawa Fissure, southern part of Okinawa Island, Central Ryukyu Islands, Japan

MATSUOKA Hiroshige¹ and HASEGAWA Yoshikazu*¹
¹Department of Geology and Mineralogy, Graduate School of Science, Kyoto University: Kyoto 606-8502, Japan.
²Corresponding author
*Gunma Museum of Natural History: Gunma 370-2345, Japan.

Abstract: 17 avian species belonging to the 10 families of 8 orders were identified in the fossil assemblage of Minatogawa Fissure, the locality of the Late Pleistocene Homo sapiens “Minatogawa Man” fossils, Minatogawa, Yaese Town, the southern part of Okinawa Island, Ryukyu, Japan. They are: Treron formosae (Columbiformes: Columbidae), Columbidae gen. et sp. indet. (Columbiformes), Phalacrocorax capillatus (Suliformes: Phalacrocoracidae), Nycticorax caledonicus (Pelecaniformes: Ardeidae), Ardeidae gen. et sp. indet. (Pelecaniformes), Gallirallus okinawae (Grufiformes: Rallidae), Porzana fusca (Grufiformes: Rallidae), Scolopax rusticola (Charadriiformes: Scolopacidae), Scolopax mira ohyamai ssp. nov. (Charadriiformes: Scolopacidae), Circus spilonotus (Falconiformes: Accipitridae), Buteouteo (Falconiformes: Accipitridae), Otus lempiji (Strigiformes: Strigidae), Garrulus lidhii (Passeriformes: Corvidae), Corvus macrorhynchos connectens (Passeriformes: Corvidae), Hysipsites amaurotis (Passeriformes: Pycnonotidae), Zoothera major (Passeriformes: Muscicapidae), and Turdus pallidus (Passeriformes: Muscicapidae).

The avian fossil assemblage of Minatogawa is characterized by dominant forest-ground dwellers. Also the avian fossil assemblage of Minatogawa, that includes the fossils of Gallirallus okinawae (endemic to Yanbaru today), Scolopax mira (endemic to the Central Ryukyu Islands; breeds only in Amami Islands and migrates south in winter and appears on Yambaru of Okinawa Island and adjacent islands today), Garrulus lidhii (endemic to Amami-Oshima and neighboring Kakeroma and Uke islands today), and Zoothera major (endemic to Amami-Oshima and Kakeroma today) indicates a strong zoogeographical connection between the forest around Minatogawa and Yanbaru, the northern part of Okinawa, and Amami Islands across the straits to the north.

The fossils of Scolopax mira (Amami Woodcock) from Minatogawa are larger than the recent specimens. Especially the wings and head are developed than the recent population. We establish a new chronological subspecies, S. mira ohyamai ssp. nov., for the fossil form and distinguish it from the recent population, S. mira mira. Transition from S. mira ohyamai to S. mira mira was possibly rapid and occurred in very recent past. It is probable that the transformation from S. mira ohyamai to S. mira mira consequent on the reduction of the range after the Late Pleistocene. The relatively small wings in the recent S. mira mira, might be a result of adaptive selection for the reduced range.

Key Words: Late Pleistocene, Okinawa, Minatogawa, avifauna, endemic bird

INTRODUCTION

The Minatogawa Man, represented by at least four skeletons and some isolated bones, are a Pleistocene Homo sapiens population of Okinawa Island (Suzuki and Hanihara eds., 1982). Their skeletons are the most complete among the Pleistocene human remains in Japan and thus are central to the investigation on the earlier phase of peopling in East Asia (Suzuki and Hanihara, 1982; Baba and Narasaki, 1991; Kodera, 2006; Kaifu, 2007).

The locality of Minatogawa Man is the Minatogawa Fissure. It locates in Minatogawa, in the area of former Gushikami (Gushichan)-son Village, Yaese Town today, the southern part of Okinawa Island (Figure 1). The Minatogawa Fissure is a tectonic fissure splitting the last interglacial limestone, the Minatogawa Limestone (Tsuchi, 1982; Hasegawa et al., 2017). Though the neighboring geography had completely changed after the heavy mining of limestone and following residential development, until the 1970s, the fissure was observable on the terrace surface of about 20-40 meters above sea level, that is the depositional surface of the Minatogawa Limestone, as a shallow depression of some hundreds meters long with the strike of N60-70° W (Tsuchi, 1982). Radiocarbon of wood piece found nearby human remains dated at 18,250 ± 650 and 16,600 ± 300 BP (Suzuki and Tanabe, 1982), ca. 20,000-22,000 years ago, supporting the last glacial maximum stage for its depositional age.

Not only the Minatogawa Man remains but also numerous non-hominin vertebrate fossils were unearthed through the excavations of Minatogawa fissure-fill deposits. Coupled with the anthropological importance, as the fauna surrounding the Minatogawa Man, the outline and/or some significant species of the Minatogawa fossil assemblage have often been recorded (e.g., Takai and Hasegawa, 1971; Kowalski and Hasegawa, 1976; Hasegawa, 1980; Kawamura, 1989; Matsuoka, 2000; Hasegawa and Matsuoka, 2002; Okinawa Prefectural Museum & Art Museum, 2007; Yasamaki, 2016; Hasegawa et al., 2017). The Minatogawa fossil assemblage is, actually, one of the most important information source for the Late Pleistocene fossil vertebrates of the Ryukyu Archipelago.

Mr. Seiho Oyama (or, Ohyama, in a pronouncing spelling) and his family and colleagues, who carried out the great discovery of Minatogawa Man in 1968, recognized skeletal elements of birds as those of fowls and called them “Minatogawa Chicken” in the days of excavations. Now, as will be described later, “Minatogawa Chicken” showed its nature as the bones of the Okinawa Rail (Gallirallus okinawae) or Amami Woodcock (Scolopax mira). Regarding the Amami Woodcock fossils of Minatogawa, it was confirmed that the fossils represent a new subspecies in this study because of its much larger size than recent population. This paper then includes the description of a new chronological subspecies of Amami Woodcock. The resulting Minatogawa Paleoaqvifauna is highly suggestive for the original distribution of unique birds of the Central Ryukyu Islands. It consists mainly of forest dwellers and indicates the full-island distribution of forest environment in the past, which...
MATSUOKA Hiroshige and HASEGAWA Yoshikazu

is restricted today in the northern mountainous Yanbaru area of Okinawa Island.

MATERIAL and METHOD

See Tsuchi (1982) and Hasegawa et al. (2017) for the geological and paleontological background of the Minatogawa Fissure. More than 1,000 disarticulated bones of birds had been unearthed from the fissure-fill muddy deposits of Minatogawa Fissure during the late 1960's - early 70's excavations. About 1,000 of them are housed in the Okinawa Prefectural Museum & Art Museum (Mb series), and about 50 are in storage at Mr. Oyama’s house (OMB series). After the unidentifiable elements, vertebrae and too-incomplete bones had been excluded from the investigation, totally 824 disarticulated bones of birds have been identified to genus - species level (Table 1).

For the identification, the osteological specimens of recent birds housed in the Department of Geology and Mineralogy, Faculty of Science, Kyoto University (KUGM), Okinawa Prefectural Museum (OPM), and Division of Birds, National Museum of Natural History, Smithsonian Institution (NMNH) were used for comparison.

The fossil assemblage of Minatogawa is strongly dominated by 1-2 species and the number of fossils of other species are few, as shown below. Then the stratigraphic (chronological) transition of avifauna around Minatogawa is out of resolution if any. So the faunal discussion in this study targets the total birds as the Minatogawa paleoavifauna, though not a few fossil bones have respective grid record (Figure 2). The systematics of birds follow the Ornithological Society of Japan (2012). The information on the recent habitat of birds referenced the ornithological books e.g. Amami Ornithologists' Club (1997) and Okinawa Yacho Kenkyu-kai (1993). The measurements of skeletal elements follow the measuring points and the term of Von den Driesch (1976).

SYSTEMATIC PALEONTOLOGY

Order COLUMBIFORMES
Family COLUMBIDAE
Genus Treron
Treron formosae

(Japanese name: Zuaka-aobato)

MATERIALS. 3 bones in Mb series: 1 almost complete right humerus (Mb0781, Plate 1-7), 1 proximal part of left scapula, 1 incomplete right tarsometatarsus.

MEASUREMENTS. Humerus: GL, 47.7 mm. Scapula: Dic, 9.5 mm. Tarsometatarsus specimen, no standard measurements possible, 22.2 mm as preserved.

COMPARABLE SPECIMENS. Treron formosae: the mounted
Table 1. Numbers of bones excavated from the Minatogawa Fissure. Numbers are the total added up from Mb and OMB series.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tremornis formosae</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Columbidae gen. et sp. indet.</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Phalacrocorax capillatus</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Nycticorax caledonicus</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ardeidae gen. et sp. indet.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gallinula okinawae</td>
<td>209</td>
<td>15</td>
<td>15</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>12</td>
<td>12</td>
<td>17</td>
<td>27</td>
<td>27</td>
<td>18</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Poreaza fusca</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Scolopax rusticola</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Scolopax mira ohiyamai</td>
<td>571</td>
<td>44</td>
<td>37</td>
<td>27</td>
<td>16</td>
<td>7</td>
<td>15</td>
<td>19</td>
<td>29</td>
<td>23</td>
<td>25</td>
<td>20</td>
<td>34</td>
<td>38</td>
<td>16</td>
<td>14</td>
<td>11</td>
<td>33</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>Circus spilonotus</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Buteo buteo</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Otus lempii</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Garrulus lehni</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Corvus macrorh. connectens</td>
<td>4</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Hypeptes amaurotis</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Zooterta major</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Turdus pallidus</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Unidentified</td>
<td>210</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1034</td>
<td>62</td>
<td>57</td>
<td>44</td>
<td>23</td>
<td>15</td>
<td>23</td>
<td>37</td>
<td>25</td>
<td>32</td>
<td>25</td>
<td>43</td>
<td>47</td>
<td>47</td>
<td>28</td>
<td>27</td>
<td>29</td>
<td>63</td>
<td>57</td>
<td>61</td>
</tr>
</tbody>
</table>

Genus and species indeterminate

MATERIALS. 3 bones in Mb series: 2 incomplete left ulnae, 1 shaft of left tarsometatarsus.

MEASUREMENTS. All fossils are fragmental and no standard measurements possible. Specimens are: ulna, 45.2 mm, 33.5 mm; tarsometatarsus, 26.7 mm, as preserved.

NOTE. These incomplete elements are the remains of at least one, or possibly more than two, of medium sized pigeons. Compared but not matched species for these fossils are: *Columba janithina*, *Streptopelia orientalis*, *Tremornis formosae*. One ulna could be a *Streptopelia orientalis*, but the tarsometatarsus is clearly not from this species.

Order SULIFORMES

Family PHALACROCORACIDAE

Genus Phalacrocorax

Phalacrocorax capillatus (Japanese name: Umi-u)

MATERIALS. 2 bones in OMB series. OMB15, nearly complete right coracoid (Plate 1-3) and OMB16, nearly complete right femur (Plate 1-4).

MEASUREMENTS. Coracoid (OMB15): Lm, 75.5 mm. Femur (OMB16): Lm, 59.6 mm; cranio-caudal diameter of mid-shaft, 9.0 mm; lateral diameter of mid-shaft, 7.5 mm.

COMPARATIVE SPECIMENS. *P. capillatus*, *P. carbo haneanus*, *P. pelagicus pelagicus*, 2-5 individuals for each species in KUGM.

IDENTIFICATION. Both coracoid and femur are large and heavily build. Some continental subspecies of *P. carbo* is as large as, or larger than, the fossil materials. The overall characters of *P. capillatus*, however, are identical to the fossil materials.

NOTE. This cormorant is a winter visitor and/or a straggler in Okinawa today and comes to the waterside especially seacoast.

Order PELECANIFORMES

Family ARDEIDAE

Genus Nycticorax

Nycticorax caledonicus

(Japanese name: formally Hashibuto-goi, but is a bad name and then we give a new name, Akacha-goi, as mentioned below)

MATERIAL. Mb0135, the proximal end of left humerus (Plate 1-1).

MEASUREMENTS. No standard measurements possible. Specimen is 31.5 mm as preserved.

COMPARABLE SPECIMEN. *N. caledonicus caledonicus* (male), USNM-561542 (Plate 1-A).

IDENTIFICATION. Mb0135 is a fragmentary proximal portion of humerus. It lacks the tuberculum ventrale and other areas seriously, but is preserving important morphology for species identification. From the overall shape, it is identifiable as a *Nycticorax* species. The size is similar to *N. nycticorax*, a common species in Japan. It is, however, only *N. caledonicus* in which the detailed osteological characters such as well expanded bicipital surface, thick deltoid crest, deep and oval attachment of supraspinatus, and the vessel impression just
Figure 2. The grid information where the bones excavated. Each grids are 2 m for horizontal direction by 1 m for vertical direction. Numbers are the number of bones counted and catalogued from each grids. The 37 bones of *Scolopax mira ohyamai* ssp. nov. from the grid D-6 includes the holotype (Mb286). Area of the Minatogawa Man individuals (right bottom) is based on Hasegawa et al. (2007).
Minatogawa paleoavifauna

distal to the bicipital surface (arrowhead in Plate 1-A) are identical to the morphology of MB0135. *N. nycticorax* never has the vessel impression just distal to the bicipital surface in its variation as far authors observed.

NOTE. This is the only record of *N. caledonicus* from Japan except an extinct (since 1889) endemic subspecies *N. c. crassirostris* of the Ogasawara (Bonin) Islands and a record of straggler on Hahajima, Ogasawara (Kawakami et al., 2015). *N. c. crassirostris* Vigors, 1839 is diagnosed by its thick and deep bill, thus the fossil is indeterminate for subspecies level.

We give a new Japanese name Akacha-goi for the species *N. caledonicus* here, because the currently used Japanese name Hashibuto-goi (Ornithological Society of Japan, 2012) is based on the peculiar character of the subspecies (Momiyama, 1930: “Hashibuto” means “stout bill”, directly translated from “crassirostris”) and thus not appropriate for the entire species. “Akacha” is the color “rufous”, a specific characteristic of this heron.

A similar heron has no record from the Ryukyu Islands as far ornithologists recorded. Today, this heron widely inhabits the Pacific Islands, roosts and forges in mangrove-lined estuaries and feeds on tidal flats (Pratt et al., 1987).

Genus and species indeterminate

MATERIAL. MB0271, the distal end of left tarsometatarsus (Plate 1-2).

MEASUREMENTS. No standard measurements possible.

IDENTIFICATION. From the antero-posteriorly flattened tarsometatarsus with laterally arranged trochlea, it is identifiable to a heron. It is a small to medium sized heron. Compared but not matched species are: *Ardea cinerea jouyi*, *Nycticorax nycticorax*, *N. caledonicus caldeonicus*, *Egretta garzetta*, *E. intermedia* and *E. sacra*. This tarsometatarsus is similar in size to it of *Egretta intermedia* within the compared seven species, but is still indeterminate to a certain species because of the characteristic robust trochlea for digit 2.

Order GRUIFORMES

Family RALLIDAE

Genus Gallirallus

Gallirallus okinawae

(Japanese name: Yanbaru-kuina)

MATERIALS. Totally 209 bones in MB and OMB series. 201 bones in Mb series: 1 right quadrate; 14 right and 12 left humeri including some complete ones (e.g., MB0160, Plate 2-5, an adult; MB0159, Plate 2-11, an immature one; MB0228, Plate 2-12, a very immature one); 7 right and 8 left ulnae (e.g., MB0216, Plate 2-13; MB0169, Plate 2-14); 8 right and 1 left carpectomacarpus (e.g., MB0043, Plate 2-15); 1 right phalanx proximalis digits majoris (MB0046, Plate 2-8); 1 fragment of sternum; 6 right and 8 left coracoids (e.g., MB0065, Plate 2-7); 3 right and 6 left scapulae (e.g., MB0252, Plate 2-6); 11 synsacrums (e.g., MB0227, Plate 2-9; MB0028, Plate 2-10); 2 coxas; 17 right and 11 left femora including some complete ones (e.g., MB0241, Plate 2-18); 27 right and 26 left tibiotarsi (e.g., MB0243, Plate 2-16; MB0168, Plate 2-17); 1 right fibula; 15 right and 15 left tarsometatarsi (e.g., MB0244, Plate 2-19; MB0224, Plate 2-20) including 1 complete (MB0244). 6 bones in OMB series: 1 right humerus, 1 left humerus, 1 synsacrum, 1 left femur, 1 left tibiotarsus, 1 left tarsometatarsus. The minimum number of individuals, calculated from the total of MB and OMB series, is 27.

COMPARATIVE MATERIALS. *Gallirallus okinawae*, 2 in OPM, 1 male and 1 sex unknown, and 1 sex unknown in KUGM. Figure 3 was drawn based on an OPM specimen. *G. torquatus* (NMNH-290445).

IDENTIFICATION. *Gallirallus okinawae* has the skeleton heavily build as a rail (Figure 3). The morphology of fossil materials from Minatogawa are identical to the recent osteological specimens of *G. okinawae*. The volant ancestor of *G. okinawae* is presumed to be *G. torquatus* which is endemic to the Philippines and Indonesia (Yamashina and Mano, 1981). In comparison to *G. torquatus*, *G. okinawae* has: larger body; relatively wider and deeper cranium; lower but not completely lost carina on sternum; similar length but much fatter and thicker pectoral and fore limb elements (coracoid, humerus, ulna, radius, carpometacarpus and phalanx proximalis digits majoris); and much larger hind limb elements (femur, tibiotarsus and tarsometatarsus). The osteological comparison of *G. okinawae* and *G. torquatus* then gives clear distinctions between them.

NOTE. *Gallirallus okinawae* is an almost flightless rail and an endemic resident of the Yanbaru area, mountainy subtropical forests of the northern part of Okinawa Island. It prefers dense habitat near grassy and swampy areas. Now, the Minatogawa area, southern part of Okinawa Island is in the distance of some 70 km from the southern limit of the modern range of *G. okinawae*. The fossil record from Minatogawa indicates the full-island distribution of breeding *G. okinawae* at the Late Pleistocene.

The fossil bones identified to this species here is the “fossil rail” of Yamashina and Mano (1981) and "remains of at least one undescribed species of flightless rail of medium-large size” mentioned by Olson (1977, p.372). Though these notes on the fossil rail of Okinawa had some consideration that the “fossil rail” might be an ancestor of the modern species, now it is confirmed that the fossils from Minatogawa and the osteological specimens of modern *G. okinawae* are morphologically identical. Olson (1973) postulated that the needed time to evolve flightlessness in rails can be very short in geological sense. With the fossil record of *G. okinawae* from Minatogawa, it was settled that the timing of the arrival of the volant ancestor on Okinawa and the evolution of *G. okinawae* in Okinawa date back before the age of fissure-fill deposition of Minatogawa, an age we have no way to trace back in this study.

Many fossil bones of Mb series were used to make two reconstructed skeletons, one is on board and the other is in running posture. The one of running posture is in exhibition of the entrance hall of the natural history wing of Okinawa Prefectural Museum & Art Museum, in the dramatic scene of the Minatogawa Man skeleton going after to catch fossil animals.

Genus Porzana

Porzana fusca

(Japanese name: Hikuina)

MATERIAL. MB0253, a complete right humerus (Plate 2-4).

MEASUREMENTS. Humerus: GL, 32.8 mm; Bp, 6.7 mm; Bd, 5.1 mm.

COMPARABLE SPECIMEN. Porzana fusca (male), USNM-319483.

IDENTIFICATION. The almost complete humerus (MB0253, Plate 2-4) is of small rail, and identical to this species here.

NOTE. It is an endemic subspecies *P. f. phaeopyga* Stejneger that is resident in the Ryukyu Islands. And a subspecies *P. f. erythrorhonas* (Temminck and Schlegel) that breeds on eastern China and main islands of Japan (Kyushu and northward) also visits the Ryukyu Islands in winter. It is impossible to identify the fossil material to the subspecies level.

Order CHARADRIIFORMES

Family SCOLOPACIDAE

Genus Scolopax

Scolopax rusticola

(Japanese name: Yamashigi)

MATERIAL. OMB41, the distal portion of right humerus (Figure 4-D, Plate 3-1).

MEASUREMENTS. Specimen is 29.1 mm as preserved. Humerus: Bp, 9.9 mm; the major and minor axes of mid-shaft,
Figure 3. The osteography of *Gallirallus okinawae*. The left side elements are shown. 1. Humerus: a, cranial; b, caudal; c, dorsal views. 2. Cranium: a, lateral; b, dorsal views. 3. Mandible: lateral view. 4. Sternum: a, lateral; b, ventral; c, dorsal views. 5. Ulna: a, cranial; b, caudal; c, dorsal views. 6. Scapula: a, dorsal; b, ventral views. 7. Coracoid: a, ventral; b, dorsal views. 8. Radius: a, cranial; b, caudal views. 9. Carpometacarpus: a, dorsal; b, ventral views. 10. Phalanx proximalis digiti majoris: dorsal view. 11. Pelvis: a, dorsal; b, lateral views. 12. Femur: a, anterior; b, posterior; c, lateral views. 13. Tibiotarsus: a, anterior; b, posterior views. A part of the distal shaft is drawn void because this portion was broken in both legs of drown individual. The lacking length was reconstructed from other specimen at a later time. 14. Tarsometatarsus: a, anterior; b, posterior views.
larger than the recent *S. mira*. The rostrum, though the fossil materials are all fragmental, was also larger and thickly build than the recent *S. mira*. The difference between fossil materials and recent *S. mira* appears to be of species level. However, because no recent-population sized fossils of *S. mira* had been unearthed from Minatogawa, the fossils are referred to a fossil form, the chronologic subspecies, of *S. mira*.

S. mira ohyamai ssp. nov.
(Japanese name: Oyamashigi, new)

HOLOTYPE. Mb0286, complete right humerus, (Plate 3-2).
PARATYPES. Five paratypes are assigned. All are from the type locality, Minatogawa Fissure. Mb0644, rostrum piece, the basic part of naso-premaxillary (Plate 3-9); Mb0611, left coracoid, (Plate 3-13); Mb0312, complete left ulna (Plate 3-17); Mb0399, left carpometacarpus, lacking osmetacarpale minus (Plate 3-15); Mb0615, complete left tarsometatarsus (Plate 3-23).

MEASUREMENTS (mm). Humerus, right, Mb0286 (holotype): GL, 64.2; Bp, 16.7; Bd, 12.1; SC, 5.2; the minor axis of shaft measured at the point of SC (Dsc), 4.4. Humerus, left, Mb0288: GL, 68.8; Bp, 17.3; Bd, 12.3; SC, 5.6; Dsc, 4.3. Humerus, left, Mb0287: GL, 62.0; Bp, 16.5; SC, 5.0; Dsc, 4.5. Humerus, right, Mb0291: GL, 63.6; Bp, 16.8; Bd, 12.4; SC, 5.2; Dsc, 4.6. Ulna, left, Mb0312 (paratype): GL, 72.6; Dp, 10.7; Dd, 9.2; Did, 8.1; SC, 4.3. Carpometacarpus, left, Mb0332: GL, 43.9; Bp, 10.8; Did, 4.9. Coracoid, right, Mb0317: GL, 38.1; Lm, 32.0; BF, 8.3+. Coracoid, left, Mb0319: GL, 36.1; Lm, 34.1; BF, 8.9+. Coracoid, left, Mb0326: GL, 36.1; Lm, 33.6; BF, 9.4. Femur, left, Mb0339: GL, 52.2; Lm, 51.4; Bd, 10.5; SC, 4.2; Dsc, 4.6. Tarsometatarsus, left, Mb0615: GL, 50.3; Bp, 9.2; Bd, 10.2; SC, 3.8. Data are shown in Figure 5.

ETYMOLOGY. Dedicated to the late Mr. Seiho Ohyama who rendered remarkable services to the paleontology and paleoanthropology of Okinawa. Discovery of the Pleistocene human fossils, Minatogawa-Man, from Minatogawa was the fruit of his arduous.

DIAGNOSIS. *Scolopax mira ohyamai* ssp. nov. is a fossil (chronological) subspecies of *S. mira*, characterized by its larger size than the recent population (*S. mira mira*). The wing elements are proportionally much larger than leg elements, and so *S. mira ohyamai* had a relatively developed wings compared with the recent *S. mira mira*. The length of main skeletal elements are, approximately, 108 % in humerus, 106 % in ulna, 107 % in carpometacarpus, 106 % in coracoid, 102 % in femur, 106 % in tibiotarsus, 102% in tarsometatarsus, of the average of the recent *S. mira mira*. *S. mira ohyamai* had the rostrum thickly build and whole skull was much larger compared with the recent *S. mira mira*.

TYPE LOCALITY. Minatogawa Fissure, Minatogawa, Yaese, the southern part of Okinawa Island, Japan.

STRATIGRAPHIC RANGE. Found from the Upper Pleistocene fissure-fill deposit of the Minatogawa Fissure. The fissure-fill deposits has radiocarbon age records of 18,250 + 650 and 16,600 ± 300 BP (Suzuki and Tanabe, 1982), ca. 20,000-22,000 years ago. *S. mira ohyamai* changed the form to the recent subspecies *S. mira mira* and does not exist today. The timing of morphological shift is not known. But, the large number of fossils from Minatogawa that originated from grid to grid in excavations (Figure 2) indicate rapid transition from *S. mira ohyamai* to *S. mira mira* occurred in very recent past.

REFERRED SPECIMENS. Totally 571 bones including holotype and paratypes in Mb and OMB series (Plate 3-2 to 24). 545 fossilized bones including holotype and paratypes in Mb series: 36 right humeri, 39 left humeri, 15 right ulnae, 24 left ulnae, 8 right radii, 7 left radii, 29 right carpometacarpus, 19 left carpometacarpus, 5 right phalanxes proximalis digitii majoris, 4 left phalanxes proximalis digitii majoris, 23 sternum fragments, 37 right coracoids, 33 left coracoids, 19 proximal fragments of right scapula, 24 proximal fragments of left

Scolopax mira
(Japanese name: Amami-yamashigi)

SPECIFIC IDENTIFICATION. A large scolopacid whose osteological characters are identical to *Scolopax*. The hind limb elements are nearly identical to *S. mira*. The pectral and fore limb elements, on the other hand, are obviously

Figure 4. Comparison of Scolopax humeri.
A. *Scolopax mira ohyamai* ssp. nov., a fossil from the Minatogawa Fissure.
B. *Scolopax mira mira*, an osteological (recent) specimen collected in Amami-Oshima.
C. *Scolopax rustica*, an osteological (recent) specimen.
D. OMB41, the distal portion of right humerus, a fossil from the Minatogawa Fissure, identified to *Scolopax rustica*. Note the small size indicated by dotted line and narrow and deep Fossa m. brachialis (arrow head) of OMB41.

4.4 mm and 4.0 mm respectively.

COMPARATIVE MATERIAL. *Scolopax rustica*, many in USNM, 1 in KUGM (Figure 4-C). Recent *S. mira* (Figure 4-B) and the fossils from Minatogawa (Figure 4-A, Plate 3-2 to 5).

IDENTIFICATION. The fossil material preserves only its distal portion. The overall shape is identical to *Scolopax*, and the size agrees to identify it to *S. rustica* (Figure 4).

NOTE. Among the rich fossils of *Scolopax* from Minatogawa, this humeral piece is noticeably small. OMB41 is the only but significant evidence of *S. mira* in Okinawa Island.
scapula, 15 synsacrum, 12 right femora, 10 left femora, 26 right tibiotarsi, 28 left tibiotarsi, 31 right tarsometatarsi, 33 left tarsometatarsi, and 68 other minor skeletal elements. 25 bones in OMB series: 1 right humerus, 5 left humeri, 1 right ulna, 3 left ulnae, 1 right coracoid, 1 left coracoid, 1 right scapula, 1 left scapula, 1 synsacrum, 1 right femur, 2 left femora, 2 right tibiotarsi, 5 left tibiotarsi, 1 left tarsometatarsus. The minimum number of individuals, calculated from the total of Mb and OMB series, is 44.

DESCRIPTION. It is obvious that the fossils are of Scolopax species. Fossil elements are large, and look alike of S. mira. However, not only the holotype humerus (Mb0286), Scolopax fossils of type locality Minatogawa are commonly larger than the osteological specimens of recent S. mira, especially in the particular elements. Figure 5 shows the measurements. Though the data are scanty in both fossil and recent birds because most of the fossil bones are broken and Amami Woodcock is a rare bird today, the difference between the fossils and recent S. mira is almost equal to the difference between S. rusticola and S. mira.

Also, the large quantity of fossil material allows us to reconstruct the original morphology for each skeletal elements (Figures 6 and 7). The measured and reconstructed length of main skeletal elements are, approximately, 108 % in humerus, 106 % in ulna, 107 % in carpometacarpus, 106 % in coracoid, 102 % in femur, 106 % in tibiotarsus, 102% in tarsometatarsus, of the average of the recent S. mira. It is important that the wing elements are proportionally larger than the leg elements. The femur and tarsometatarsus do not have clear size differences, only 2 % larger, in contrast to the recent S. mira.

The skull and mandible of fossil form appear to be much proportionally larger. A paratype Mb0644, the basic part of naso-premaxillary of rostrum is remarkably robust (Plate 3-9). Cranium (Plate 3-6) is built thickly. Quadrate (Plate 3-7), lower mandible portions (Plate 3-11, 12), and fragments of rostrum (e.g., Plate 3-10) are large and solid. The estimated size of whole skull of fossil woodcock reaches as larger as 125 % of recent S. mira (Figure 7). A big-headed appearance of the fossil bird is probable.

Some specimens are incompletely ossified (Plate 3-4, 5), which indicate the breeding status of this bird on the southern part of Okinawa at the Late Pleistocene.

NOTE. The morphological difference between the fossil form and recent Scolopax mira is definitely a species-level. But, the Minatogawa fissure-fill deposits do not yield the recent-sized
wing elements of *Scolopax mira*, *Scolopax rusticola*, on the contrary, has its fossil occurrence (OMB41) from Minatogawa as above noted. The simple conclusion of such situation is to regard the fossil form as the chronological subspecies: the fossil form and the recent form are under the chronological allopatry. We therefore establish a new subspecies for the fossil form and name *Scolopax mira ohyamai*.

Recent *S. mira mira* is endemic in the Central Ryukyu Islands. It breeds only on Amami-Oshima, wherein common in evergreen forests and sugar cane fields. It migrates south in winter and appears on Yambaru of Okinawa Island and adjacent islands, but does not breed in these southern islands of its range. Fossil subspecies *S. m. ohyamai*, on the other hand, has the evidence of breeding in Minatogawa, the southern end of Okinawa Island. Fossil *S. mira* (subspecies unknown in this study) is recorded from the Pinza-abu Cave of Miyako Island (Matsuoka, 2000). *S. m. ohyamai* had relatively wing-developed proportion. It could be hypothesized that *S. m. ohyamai*, which was a powerful flier and had wide range, had to be evolved to the smaller *S. m. mira* at the glacial-postglacial transition.

Fossils of *S. m. ohyamai* originated throughout the excavation grids (Figure 2). That means, though the deposition system was not simple in the Minatogawa fissure fill deposits (Hasegawa et al., 2017), it must took long time of hundreds to thousands years order. However, all *S. mira* fossils of Minatogawa are uniform in size, with no relation to the stratigraphic revel. This fact may indicates the morphological stability for the avian chronological subspecies. *S. m. ohyamai* kept its wing-developed proportion for long years, and after the transition, the chronologically younger *S. m. mira* has also its own proportion with small variation today. Quick and punctuational transition from *S. m. ohyamai* to *S. m. mira* is expected. *Scolopax mira* could be a good example to show the punctuated equilibrium model for the morphological transition in avian species if the Holocene records grown up.
Order FALCONIFORMES
Family ACCIPITRIDAE
Genus Circus
Circus spilonotus
(Japanese name: Chuuhi)
MATERIAL. Mb0145, the distal portion of left tarsometatarsus (Plate 1-5).
MEASUREMENTS. No standard measurement possible. Specimen is 47.5 mm as preserved.
COMPARATIVE MATERIALS. Circus aeruginosus (male) USNM-557495. Following species were also compared in USNM: C. approximans, C. cyaneus hudsonius, C. melanoleucus.
IDENTIFICATION. The overall shape of fossil material is almost identical to the compared Circus aeruginosus specimen.
Formerly, Circus aeruginosus and C. spilonotus (and more relatives) were included in single species Circus aeruginosus (Ornithological Society of Japan, 2012). We could not examine the osteological specimen of Eastern marsh harrier (C. spilonotus), and the fossil is slightly larger than compared specimen of male C. aeruginosus collected at Azerbaijan (USNM-557495). More specimens, strictly speaking, are needed to determine the specific identification for this tarsometatarsus, but we are clear to identify the fossil to this common species of Japan.
NOTE. Circus spilonotus is a rare winter visitor in Ryukyu, while it is a common winter visitor in Kyushu and northward and breeds in northern Japan (Takano, 1994).

Genus Buteo
Buteo buteo
(Japanese name: Nosuri)
MATERIAL. Mb0146, the distal portion of left ulna (Plate3-6).
MEASUREMENTS. No standard measurements possible. Specimen is 38.4 mm as preserved.
COMPARABLE MATERIAL. Buteo buteo, 1 KUGM.
IDENTIFICATION. The fossil material is fragmental, but identifiable to a medium-sized accipitrid. The overall shape is identical to Buteo buteo.
NOTE. Buteo buteo is a winter visitor in the islands of Ryukyu (Takano, 1994).

Order STRIGIFORMES
Family STRIGIDAE
Genus Otus
Otus lempiji
(Japanese name: Oo-konohazuku)
MATERIALS. 10 skeletal elements in Mb series and 1 in OMB series: 1 right humerus (Mb0134, Plate 1-8), 1 left humerus, 1 right scapula (Mb0113, Plate 1-11), 1 left coracoid (OMB42, Plate 1-12), 1 left femur (Mb0124, Plate 1-13), 1 right tibiotarsus (Mb0147, Plate 1-14), 1 right tarsometatarsus (Mb0138, Plate 1-9), 3 left tarsometatarsi (e.g. Mb0139, Plate 1-10).
COMPARATIVE MATERIAL. Otus lempiji semitorques, 2 KUGM, one from Kyoto City and one from Hakusan City, Ishikawa Prefecture, Japan (both in Honshu Island).
IDENTIFICATION. The fossil materials are fragmental, but identifiable to a small-sized strigid, and are totally identical in shape and size to the specimens of O. l. semitorques. Then we identify the fossils to this species, though we could not investigate the osteology of Otus lempiji pryeri.
NOTE. An endemic subspecies Otus lempiji pryeri lives in the Okinawa Islands and Southern Ryukyu Islands.

Order PASSERIFORMES
Family CORVIDAE
Genus Garrulus
Garrulus lidthi
(Japanese name: Ruri-kakesu)
MATERIALS. 8 skeletal elements, 7 in Mb series and 1 in OMB series. Mb0128, the shaft of left humerus; Mb0131, a left ulna lacks only the both ends (Plate 2-2); Mb0129, the distal portion of left ulna; Mb0132, a right scapula (Plate 2-1); 10
Mb0128, the shaft of left tibiotarsus; Mb0141, the proximal end of left tarsometatarsus; OMB43, the proximal portion of left tarsometatarsus (Plate 2-3); Mb0130, the distal portion of left tarsometatarsus.

MEASUREMENTS. Specimens are: Mb0128, 19.5 mm; Mb0131, 38.2 mm; Mb0129, 20.0 mm; Mb0132, 18.3 mm; Mb0128, 17.3 mm; Mb0141, 11.3 mm; OMB43, 17.7 mm; Mb0130, 19.1 mm, as preserved. The width of proximal end of tarsometatarsus, 6.7 mm (measured in OMB43).

COMPARATIVE MATERIALS. Garrulus lidthi collected in Kyoto, in KUGM. Garrulus glandarius collected in Amami-Oshima, 1 in KUGM. The ulnae and tarsometatarsi of both species, with a tarsometatarsus of Corvus macrorhynchos osai as a reference, are shown next to the fossils (Plate 2-A to E).

IDENTIFICATION. Fossil materials are identical to Garrulus. In comparison between G. lidthi and G. glandarius, the bones of G. lidthi is larger and proportionally robust in general. The nearly complete ulna (Mb131) is certainly identical to G. lidthi. Based on the shape of caudal marginal of ulna in dorso-ventral aspect: it is moderately rounded in G. lidthi, and the appearance is different from G. glandarius that is much straight (white broken lines of Plate 2-A and B). On tarsometatarsus, some characters in anterior view are useful to distinguish G. lidthi from G. glandarius; sulcus extensorius locates medially; the distal end of tuberositas m. tibialis cranialis (arrowhead on Plate 2-C) is wide and developed; the medial marginal of proximal end (dot line on Plate 2-C) is parallel to the long axis of bone.

NOTE. Garrulus lidthi is a world-famous endemic bird of Amami Islands. It is endemic only in Amami-Oshima and the adjuant isles today, with historical range in Tokuno-shima Island. Lives and nests in the evergreen forests, normally arboreal and occasionally feeds on the ground.

Together with the case of Zoothera major, fossils from Minatogawa revealed the wider distribution of this endemic bird, covering whole Central Ryukyu Islands at the Late Pleistocene.

Figure 8. The comparison of Corvus carpometacarpi. The dorsal view of left carpometacarpi. A. Corvus macrorhynchos osai collected in Iriomote Island. B. C. macrorhynchos connectens collected in Amami-Oshima Island. C. Mb0121 (proximal fragment) and Mb0122 (distal fragment) from the Minatogawa Fissure, and the size reconstruction of these fossils (dotted line). D. A small example of Corvus macrorhynchos japonensis, an individual collected in Kyoto. E. A largest individual of Corvus macrorhynchos japonensis, collected in Shinjuku, Tokyo. Note that, though fragmentary, the fossils match up to C. macrorhynchos connectens.

Genus Corvus
Corvus macrorhynchos connectens
(Japanese name: Ryukyu-hashibutogarasu)

MATERIALS. 4 fragments, 2 in Mb series and 2 in OMB series. OMB45, the cranial portion of right coracoid (Plate 1-16); Mb0121, Mb0122, 2 pieces of left carpometacarpus (Figure 8-C, Plate 1-18, Plate 1-19); OMB46, the distal portion of right tarsometatarsus (Plate 1-17).

MEASUREMENTS. No standard measurements possible. Specimens are: 15.3, 12.7, 28.5, and 31.3 mm for Mb, Mb, Mb, and Mb, respectively.

COMPARATIVE MATERIALS. Corvus macrorhynchos japonensis, many in KUGM, two carpometacarpi, one of the largest and a small example in the collection, are shown in Figure 8-D, E. C. macrorhynchos connectens, 3 in KUGM, collected in Amami-Oshima Island, a carpometacarpus is shown in Figure 8-B. C. macrorhynchos osai, 1 in KUGM, collected in Iriomote Island, a carpometacarpus is shown in Figure 8-A.

IDENTIFICATION. The fossil materials are fragmentary, but identifiable to a small Corvus. Though fragmentary, the size exactly fit to C. m. connectens (Figure 8), and we identify fossils to this subspecies.

NOTE. Though they are quite fragmentary, the fossils from Minatogawa are identifiable to C. m. connectens. This subspecies is endemic to the Central Ryukyu Islands, and shows allopatric distribution to C. m. japonensis of main-islands of Japan. Hasegawa et al. (1978), in contrast, reported C. macrorhynchos from the Gohezu cave of Ie Island. The fossils of Gohezu is stunningly large and they are identical to C. m. japonensis. Now we may have two hypotheses on the evolution and taxonomy of connectens. One is the possibility of rapid subspeciation from large japonensis-type population to smaller connectens, occurred after the age of Gohezu and before the age of Minatogawa. And the other possibility is the sympatric coexistence of japonensis and connectens in the Late Pleistocene on Okinawa Island, with a story that the recent allopatric ranges of jungle crows, japonensis in northern main islands of Japan and connectens in Ryukyu, is a superficial pattern caused through the disappearance of japonensis from Ryukyu. Further research is needed on this problem.

Family PYCNONOTIDAE
Genus Hypsipetes

Hypsipetes amaurotis
(Japanese name: Hiyodori)

MATERIALS. 4 bones in Mb series: the shaft of left humerus, the distal portion of left ulna, the cranial portion of right coracoid (Mb0784, Plate 1-15).

COMPARATIVE MATERIALS. Hypsipetes amaurotis, many in KUGM: many Hypsipetes amaurotis amaurotis (Honshu and Kyushu individuals), 1 H. a. pryeri (collected in Okinawa), 1 H. a. stejnegeri (collected in Ishigaki).

IDENTIFICATION. From the overall shape and size, fossil materials are identified to Hypsipetes amaurotis.

NOTE. Hypsipetes amaurotis is an abundant resident in Okinawa and living light woods and forests of mountains to lowland. This species is divided into many subspecies. In the Ryukyu Archipelago, H. a. ogvae of the Amami Islands, H. a. pryeri of the Okinawa and Miyako islands, H. a. stejnegeri of the Yaeyama Islands, and H. a. nagamichii of Yonaguni and Taiwan islands are the endemic subspecies. In addition, H. a. hensoni the resident of Hokkaido and H. a. amaurotis of the other main islands migratory visit the islands of Ryukyu. They mainly depend on the darkish coloring, and are not unique for the osteology. So it is impossible to identify the Late Pleistocene fossils to the subspecies.
(Japanese name: Os-toratugumii)

MATERIALS. Three bones in Mb series: Mb0127, the shaft of left humerus (Plate 1-23); Mb0786, an almost complete left coracoid (Plate 1-22); Mb0126, the distal portion of right carpometacarpus (Plate 1-21).

MEASUREMENTS. Specimen length as preserved are 28.5, 32.0, and 14.8 mm for Mb0127, Mb0786, and Mb0126, respectively. The specimen length of Mb0786, coracoid, is equal to Lm of Von den Driesch (1976).

COMPARATIVE MATERIALS. Zoothera major, 1 in KUGM (Plate 1-C, D, E) from Amami-Oshima Island. Zoothera dauma, 5 in KUGM, all from Honshu Island.

IDENTIFICATION. Fossil materials are of large thrush. The almost complete left coracoid (Mb0786, Plate 1-22) and the distal portion of right carpometacarpus (Mb0126, Plate 1-21) are identical to Zoothera major (Plate 1-C and D) in shape and size. The skeleton of Z. major is obviously larger and strongly build than Z. dauma and the difference can never be the intraspecific one. The humerus lacking both ends (Mb0127, Plate 1-23) is not characteristic enough to identify definitely.

NOTE. We treat this bird as a full-species, though the assemblage as a paleoavifauna consists mainly of forest-ground dwellers living in forest and walk around to find foods with their developed legs. Other species, Treron formosae, Porzana fusca, Scolopax rusticolia, Otus lempiji, Garrulus lidii, Corvus m. connectens, Hpyspites amuraotus, Zoothera major, and Turdus pallidus have also the lifestyle prefer forest. Only Phalacrocorax capillus, Nycticorax caledonicus, Circus spilonotus, and Buteo buteo are somewhat extraneous to call forest dweller, but still nest or hunt in forest and then have relation to forest.

Today the Minatogawa Fissure locates close to sea coast and the terrace surface is only 20 m or so above sea. It was, however, at around the Last Glacial Maximum stage when deposits filled the fissure and the sea level regressed more than 100 m (Suzuki and Tanabe, 1982). Then the ground surface fissured by the Minatogawa Fissure was at roughly 120 m or more above sea in that age, with wide land sloping to coastline in south. Such hilly geography is suited to be developed by vegetation. The Minatogawa Paleoaivifauna must have formed in a forest, which was like the one in today’s Yanbaru and Amami islands.

Geologically, the Minatogawa Fissure is a tectonic fissure appeared in the terrace surface. Ground was developed by vegetation. What would happen in such dangerous situation for ground dwellers? It was a natural pitfall, wasn’t it? Actually, the avian fossil assemblage show characters that are consistent with ‘pitfall hypothesis’: dominant fossil occurrence of forest-ground dwellers; the characteristic mode of fossil occurrences and the characteristic paleoavifauna of the Minatogawa Fissure. But the avifauna today shows patchy patterns, “per island” in general: Garrulus lidii and Zoothera major distribute only in Amami-Oshima and adjacent isles, Scolopax mirda breeds only on the Amami Islands though some of them migrate into the islands around Okinawa in winter, and Gallirallus okinawae inhabit only in Yanbaru. What would be a cause of such faunal fragmentation?

Paleontological investigations on insular birds, which increased explosively in recent years, have repeatedly shown that the early human activity had left extremely adverse effects on island ecosystems world-widely (e.g. Cassels, 1984; Olson and James, 1984; Steadman, 1995). Now we know that the resulting extinctions or extirpations of populations have produced completely unnatural faunal assemblages that are grossly misleading with regard both to species diversity and zoogeographical patterns of islands (Olson, 1990).

The paleoaivifauna of the Minatogawa Fissure, which was with Homo sapiens Minatogawa Man, conflicts to the view of human-caused extirpation of birds in Okinawa. If humans were criminal for the local extinction of birds, it might be by the post-Minatogawa-Man generation. We do not know why and when it occurred. But, it is certain we must take our remark to heart that the existing state of the forests of Yanbaru and Amami are truly like the “Noah’s ark”. These forests should be preserved with special consciousness.

CONCLUSION

The avian fossil assemblage of the Minatogawa Fissure, the locality of the Late Pleistocene Homo sapiens Minatogawa Man fossils, Minatogawa, Yaese Town, the southern part of Okinawa Island consists of 17 species belonging to 10 families of 8 orders. They are listed as below. The word in brackets is the Japanese name.

Columbiformes
Columbidae
Treron formosae [Zuaka-aobato]
Gen. et sp. indet.
Suliformes
Phalacrocoracidae
Phalacrocorax capillus [Umi-u]
Pelecaniformes
Ardeidae
Nycticorax caledonicus [Akacha-go]
Minatogawa paleoavifauna

<table>
<thead>
<tr>
<th>Number</th>
<th>Species</th>
<th>Common Name</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zoothera major</td>
<td>Oo-toratugumi</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Otus lempijii</td>
<td>Oo-konohazuku</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Treron formosae</td>
<td>Zaaka-aobato</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Circus spilonotus</td>
<td>Chuuhi</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Hypsipetes amaurotis</td>
<td>Hiyodori</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Gallirallus lidithi</td>
<td>Ruri-kakesu</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Nycticorax caledonicus</td>
<td>Akacha-go</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Buteo buteo</td>
<td>Nosuri</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Corvus m. connectens</td>
<td>Ryukyu-hashibutogarasu</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Scolopax mira ohyamai</td>
<td>Ooyamashigi</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Gallirallus okinawae</td>
<td>Yanbaru-kuina</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Turdus pallidus</td>
<td>Shirohara</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Porzana fusca</td>
<td>Hikuina</td>
<td></td>
</tr>
</tbody>
</table>

The insular fauna of the Ryukyu Archipelago is highly unique. Through the paleontological investigation of the fossil records of animals, the ecological importance of the forests of Yanbaru (the northern part of Okinawa Island) and Amami-Oshima Island is
ACKNOWLEDGMENTS

We would like to express our sincere thanks with deep respect to Messrs. Seikou Ohyama, Seishin Ohyama, and Morimasa Oyama, sons of the late Mr. Seiho Oyama, and the late Mr. Chokei Kishaba of Naha City. Mr. Kishaba was a good friend and colleague of Mr. Seiho Oyama and promoted the paleontology and paleoanthropology of Okinawa in his life.

Thanks are also go to Dr. Makoto Manabe of National Science Museum, Messrs. Koushou Kamiya and Kenji Takehara of Okinawa Prefectural Museum, and Doctors Storrs L. Olson and Helen F. James of National Museum of Natural History, Smithsonian Institution who helped to examine the collection housed in the museums. Mr. Yuichi Kitamura embodied our image of paleo-scenery of Minatogawa as a beautiful drawing. This paper was greatly improved by numerous significant comments and suggestions by reviewers Dr. Takeshi Yamasaki of Yamashina Institute of Ornithology and Mr. Hollis Willi Butts of Museum Import.

REFERENCES

「港川人」周囲の鳥類：沖縄島南部港川フィッシャーから産した後期更新世の鳥類化石群

松岡広繁1・長谷川善和2

1京都大学大学院理学研究科地球惑星科学専攻地質学鉱物学教室：〒606-8502 京都市左京区北白川追分町
2群馬県立自然史博物館：〒370-2345 群馬県富岡市上黒岩1674-1

要旨：「港川人」として知られる後期更新世人の化石を産出したことで有名な沖縄島南部八重瀬町港川の港川フィッシャーは、また琉球列島の動物化石の産地としても極めて重要である。本研究ではこのうちの鳥類化石について、その特徴を報告する。1000点以上ある鳥類化石群から椎骨やあまりにも破片的で同定不能なものを除き、約820点についてほぼ種レベルの同定を完了して、8目10科に属する17種・亜種を認めた。それらは、ズアカオバト（ハト科）・ハト科の不明種・ウミウ（ウ科）・アカチャゴイ（標準和名はサギ科）、サギ科の不明種・ヤンバルクイナ（クイナ科）・ヒイナ（クイナ科）・ヤマクイナ（シギ科）・オヤマシギ（アマミヤマシギの新亜種：シギ科）・チュウヒ（タカ科）・サンバ（タカ科）・オオコノハズク（フクロウ科）・リウカケス（カラス科）・ヒヨドリ（ヒヨドリ科）・オオトラツグミ（ヒタキ科）・シロハラ（ヒタキ科）である。オヤマシギScolopax mira ohyamai ssp. nov.は現世アマミヤマシギScolopax mira miraに比して翼が大きく、飛翔能力が高かったと考えられる。港川の化石群のうち、オヤマシギが化石点数の68%近くを占める。次に多産するヤンバルクイナと合わせて、95%に達する。港川古鳥類相の特徴は、総じて森林性の種が卓越し、港川人の生存時には現在のヤンバルのような森林であったと考えられる。鳥類化石の多くは、松床を歩き回っていた鳥がクレバス状の「自然の落とし穴」にはまって死亡し、堆積物に覆われたものと考えられる。港川古鳥類相は、ヤンバルクイナ（現在はヤンバルの固有種）やアマミヤマシギ・リウカケス・オオトラツグミ（奄美大島周辺の固有種）という著しい固有種の化石が含まれる特徴がある。現在は島ごとに棲み分けているかのような固有鳥類であるが、後期更新世には中部琉球全体に一的な鳥類相が広がっていたことが考えられる。ヤンバルや奄美の森林は、こうした固有鳥類の「ノアの箱舟」といえよう。
1 to 23: The avian fossils from the Minatogawa Fissure.
A to E: The comparative osteological specimens of modern birds.

1. *Nycticorax caledonicus* (Pelecaniformes: Ardeidae). The proximal end of left humerus (Mb0135). a, ventral view; b, caudal view; c, cranial view.
2. An Ardeidae genus and species indeterminate. The distal end of left tarsometatarsus (Mb0271). a, anterior view; b, posterior view.
4. A nearly complete right femur (OMB16). a, lateral view; b, anterior view; c, posterior view.
5. *Circus spilonotus* (Falconiformes: Accipitridae). The distal portion of left tarsometatarsus (Mb0145). a, anterior view; b, posterior view.
6. *Buteo haeus* (Falconiformes: Accipitridae). The distal portion of left ulna (Mb0146). a, dorsal view; b, ventral view.
8 to 14. Anus lempijii (Strigiformes: Strigidae). The proximal portion of right humerus (Mb0134). a, caudal view; b, cranial view.
9. A right tarsometatarsus lacking the proximal portion (Mb0138). a, anterior view; b, posterior view.
10. A left tarsometatarsus lacking the proximal end (Mb0139). a, anterior view; b, posterior view.
11. A right scapula lacking the blade (Mb0113). a, ventral view; b, dorsal view.
12. A left coracoid lacking the top portion (OMB42). a, ventral view; b, dorsal view.
13. A left femur lacking the distal end (Mb0124). a, anterior view; b, posterior view.
14. The distal portion of left tibiotarsus (Mb0147). a, anterior view; b, posterior view.
16 to 19. Corvus connectens (Passeriformes: Corvidae). The cranial portion of right coracoid (OMB45). a, ventral view; b, dorsal view.
17. The distal portion of right tarsometatarsus (OMB46). a, anterior view; b, posterior view.
18. A piece of proximal portion of left carpometacarpus (Mb0121). a, ventral view; b, dorsal view.
19. A piece of distal portion of left carpometacarpus (Mb0122). a, ventral view; b, dorsal view.
20. Turdus pallidus (Passeriformes: Muscicapidae). The distal portion of right tibiotarsus (OMB44). a, anterior view; b, lateral view.
22. An almost complete left coracoid (Mb0786). a, dorsal view; b, ventral view.
23. The shaft of left humerus (Mb0127). a, caudal view; b, cranial view.

A. The proximal portion of left humerus of *Nycticorax caledonicus caledonicus* (male), USNM-561542. The cranial view. See text for the explanation of arrowhead. B. A right tibiotarsus of recent *Turdus pallidus* from KUGM osteological collection. a, anterior view; b, lateral view. C. A right carpometacarpus of recent Zoothera major from KUGM osteological collection. The dorsal view. D. A left coracoid of recent Zoothera major from KUGM osteological collection. The dorsal view.

A left humerus of recent Zoothera major from KUGM osteological collection. The cranial view.
Explanation of Plate 2

1 to 20: The avian fossils from the Minatogawa Fissure.
A to E: The comparative osteological specimens of modern birds.

1 to 3. *Garrulus lidthi* (Passeriformes: Corvidae). 1. A right scapula lacking the distal blade (Mb0132). a, ventral view; b, dorsal view. 2. A left ulna lacks only the both ends (Mb0131). a, cranial view; b, caudal view; c, dorsal view. 3. The proximal portion of left tarsometatarsus (OMB43). a, anterior view; b, posterior view.

4. *Porzana fusca* (Gruiformes: Rallidae). A complete right humerus (Mb0253). a, cranial view; b, caudal view. 5 to 20. *Gallirallus okinawae* (Gruiformes: Rallidae). 5. A right humerus (Mb0160). a, cranial view; b, caudal view. 6. A right scapula lacking the distal blade (Mb0252). a, cranial view; b, dorsal view. 7. A right coracoid (Mb0065). a, ventral view; b, dorsal view. 8. A right phalanx proximalis digitii majoris (Mb0046). a, dorsal view; b, cranial view. 9. A synsacrum lacking the caudal end (Mb0227). a, ventral view; b, right lateral view. 10. An incomplete synsacrum with some portion of ilium and median dorsal ridge (Mb0028). The right lateral view. 11. The proximal portion of left humerus of an immature individual (Mb0159). a, caudal view; b, cranial view. 12. The proximal portion of left humerus of a chick, more immature than Mb0159 (Mb0228). a, caudal view; b, cranial view. 13. A left ulna lacking the distal portion (Mb0216). a, ventral view; b, cranial view. 14. A right ulna lacking the distal portion (Mb0169). a, ventral view; b, cranial view. 15. A left carpometacarpus lacking the proc. extensorius and os metacarpale minus (Mb0043). a, ventral view; b, dorsal view. 16. The proximal portion of left tibiotarsus (Mb0243). a, anterior view; b, posterior view. 17. A right tibiotarsus lacking the proximal portion (Mb0618). a, posterior view; b, anterior view. 18. A left femur (Mb0241). a, anterior view; b, posterior view. 19. A left tarsometatarsus (Mb0244). a, anterior view; b, posterior view. 20. The distal portion of left tarsometatarsus (Mb0224). a, anterior view; b, posterior view.

A. A left ulna of recent *Garrulus lidthi* from KUGM osteological collection. The dorsal view. See text for the explanation of broken line. B. A left ulna of recent *Garrulus glandarius* from KUGM osteological collection. The dorsal view. See text for the explanation of broken line. C. A left tarsometatarsus of recent *Garrulus lidthi* from KUGM osteological collection. The anterior view. See text for the explanation of dot line and arrowhead. D. A left tarsometatarsus of recent *Garrulus glandarius* from KUGM osteological collection. The anterior view. See text for the explanation of dot line. E. A left tarsometatarsus of recent *Corvus connectens osai* (*C. macrorhynchos osai*) from KUGM osteological collection. The anterior view.
Explanations of Plate 3

1 to 24: The avian fossils from the Minatogawa Fissure.

1. *Scolopax rusticola* (Charadriiformes: Scolopacidae). The distal portion of right humerus (OMB41). a, caudal view; b, cranial view.

2. *S. mira ohyamai* ssp. nov. The holotype right humerus (Mb0288). a, cranial view; b, caudal view.

3. A left humerus (Mb0288). a, cranial view; b, caudal view.

4. The proximal portion of left humerus of an immature individual (Mb0089). a, cranial view; b, cranial view.

5. The distal portion of left humerus of an immature individual (Mb0504). a, cranial view; b, cranial view.

6. A fragmentary cranium (Mb0581). The ventral view.

7. A right quadrate (Mb0590). a, lateral view; b, medial view.

8. A left scapula lacking the distal blade (Mb0740). a, dorsal view; b, ventral view.

9. The paratype rostrum piece, the basic part of naso-premaxillary (Mb0644). a, lateral view; b, dorsal view.

10. The dorsal portion of right premaxilla (Mb0457). a, ventral view; b, dorsal view.

11. The middle portion of left mandible (Mb0716a: broken to a and b). The lateral view.

12. The articular portion of left mandible (Mb0716b). The lateral view.

13. A left coracoid (Mb0611). a, dorsal view; b, ventral view.

15. The paratype left carpometacarpus lacking os metacarpale minus (Mb0399). a, dorsal view; b, ventral view.

16. A right carpometacarpus lacking os metacarpale minus (Mb0332). a, ventral view; b, dorsal view.

17. The paratype left ulna (Mb0312). a, caudal view; b, cranial view.

18. A right phalanx proximalis digit majoris (Mb0757). a, dorsal view; b, ventral view.

19. A left femur lacking the proximal end (Mb0557). a, anterior view; b, lateral view.

20. A right tibiotarsus lacking the distal part (Mb0395). a, anterior view; b, posterior view.

21. A right tibiotarsus lacking the proximal portion (Mb0394). a, anterior view; b, posterior view.

22. The distal half of right tibiotarsus (Mb0558). a, anterior view; b, posterior view.

23. A left tarsometatarsus (Mb0615). a, posterior view; b, anterior view.

24. A right tarsometatarsus (Mb0630). a, anterior view; b, posterior view.